Eisenstein Series and String Thresholds ⋆

نویسندگان

  • N. A. Obers
  • B. Pioline
چکیده

We investigate the relevance of Eisenstein series for representing certain G(Z)-invariant string theory amplitudes which receive corrections from BPS states only. G(Z) may stand for any of the mapping class, T-duality and U-duality groups Sl(d, Z), SO(d, d, Z) or E d+1(d+1) (Z) respectively. Using G(Z)-invariant mass formulae, we construct invariant modular functions on the symmetric space K\G(R) of non-compact type, with K the maximal compact subgroup of G(R), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincaré upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one-and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R 4 and R 4 H 4g−4 couplings in toroidal compactifications of M-theory to any dimension D ≥ 4 and D ≥ 6 respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On R threshold corrections in type IIB string theory and (p, q)-string instantons

We obtain the exact non-perturbative thresholds of R terms in type IIB string theory compactified to eight and seven dimensions. These thresholds are given by the perturbative tree-level and one-loop results together with the contribution of the D-instantons and of the (p, q)-string instantons. The invariance under U -duality is made manifest by rewriting the sum as a non-holomorphic invariant ...

متن کامل

Eisenstein Series in String Theory

We discuss the relevance of Eisenstein series for representing certain G(Z)-invariant string theory amplitudes which receive corrections from BPS states only. The Eisenstein series are constructed using G(Z)-invariant mass formulae and are manifestly invariant modular functions on the symmetric space K\G(R) of noncompact type, with K the maximal compact subgroup of G(R). In particular, we show ...

متن کامل

Integer Forms of Kac–moody Groups and Eisenstein Series in Low Dimensional Supergravity Theories

Abstract. Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms G(Z) are conjecturally U– duality groups. Mathematical descriptions of G(Z), due to Tits, are functorial and not amenable to computation or applications. We construct Kac–Moody groups over R and Z using an analog of Chevalley’s constructions ...

متن کامل

Integral Forms of Kac–moody Groups and Eisenstein Series in Low Dimensional Supergravity Theories

Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms G(Z) are conjecturally U– duality groups. Mathematical descriptions of G(Z), due to Tits, are functorial and not amenable to computation or applications. We construct Kac–Moody groups over R and Z using an analog of Chevalley’s constructions in finite ...

متن کامل

Fourier expansions of Kac–Moody Eisenstein series and degenerate Whittaker vectors

Motivated by string theory scattering amplitudes that are invariant under a discrete U-duality, we study Fourier coefficients of Eisenstein series on Kac– Moody groups. In particular, we analyse the Eisenstein series on E9(R), E10(R) and E11(R) corresponding to certain degenerate principal series at the values s = 3/2 and s = 5/2 that were studied in [1]. We show that these Eisenstein series ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999